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INTRODUCTION

Rapid population growth and adverse envi-
ronmental conditions make it necessary to con-
duct good planning in terms of the protection and 
use of water, which is a limited resource (Aktürk 
and Yıldız, 2018; Tayyab et al., 2019, Obasi et al., 
2020; Ali and Shahbaz, 2020). Globally, problems 
have increased with the effects of climate change, 
and it is predicted that the decrease in usable wa-
ter resources will create a serious risk every year 
(Selek et al., 2019). One of the most valid ways to 
reduce the risk is to carry out accurate planning. 
The available flow data should be sufficient for 
planning. Creating prediction models with flow 
data in basins where water resources are gathered 
is considered very valuable in terms of hydrology 
(Riad et al., 2004; Huo et al., 2012; Nourani et 
al., 2015; Komasi and Sharghi, 2016; Sun et al., 
2019; LV et al., 2020; Adnan et al., 2020). The 
fact that hydrological information acquisition 

processes – including flow data – are mostly non-
linear, making calculations and modeling quite 
difficult (Gümüş and Kavşut, 2013; Patel et al., 
2016; Patel and Joshi, 2017; Kumar et al., 2019). 
Therefore, it is thought that using ANN, which is 
a closed-box model, can greatly facilitate solu-
tions as prediction model using observed rainfall 
and runoff data (Kişi, 2008; Okkan et al., 2018). 

In the literature, there are various studies in 
which ANN methods have been used in rainfall–
runoff modeling. In these studies, in general, the 
observed rainfall and runoff data have been eval-
uated as input values,   and forecasting with the 
help of the flow data was constituted to predict 
the output value (Gümüş et al., 2013; Farajzadeh 
et al., 2014; Nourani et al., 2015; Nawaz et al., 
2015; Aichouri et al., 2015; Hosseini and Mah-
jouri, 2016; Komasi and Sharghi, 2016; Turhan et 
al., 2016a; Turhan et al., 2016b; Patel and Joshi, 
2017; Singh et al., 2018; Tayyab et al., 2019; Asa-
di et al., 2019; Üneş et al., 2019; Turhan et al., 
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2019; Vidyarthi et al., 2020; LV et al., 2020). The 
studies, in which inputs were selected as rainfall, 
temperature, past flow rate values in terms of var-
ious hydrological data and in which runoff pre-
diction models were selected as methodology, are 
also included in the literature (Besaw et al., 2010; 
Panagoulia et al., 2017; Ateeq-ur-Rauf et al. 
2018; Adnan et al., 2020; Boucher et al., 2020). 
It is possible to come across many studies adopt-
ing FFBPNN, GRNN, and Radial Based Function 
Network (RBFN) methods (Alp and Cığızoğlu, 
2004; Kişi, 2008; Ustaoğlu et al., 2008; Besaw 
et al., 2010; Okkan and Dalkılıç, 2012; Gümüş 
and Kavşut, 2013; Tayyab et al. 2016; Sonmez 
et al., 2016; Yin et al., 2016; Yaseen et al., 2016; 
Zhou et al., 2018; Modaresi et al., 2018; Tayfur 
et al., 2018). Also, to test the sensitivity of ANN 
methods, comparisons were made with the re-
sults of MLR and Multiple Nonlinear Regression 
(MNLR) techniques, which are widely accepted 
methods (Ustaoğlu et al., 2008; Eyüpoğlu et al., 
2010; Gümüş et al., 2013; Ramana, 2014; Patel 
et al., 2016; Ilaboya and  Igbinedion, 2019; Sun 
et al., 2019; Song et al., 2020). As a result of the 
studies, it was observed that ANN methods yield-
ed satisfactory results compared to traditional 
analyses (Gümüş et al., 2013; Meng et al., 2015; 
Turhan et al., 2016a; Daliakopoulos and Tsanis, 
2016; Shoaib et al., 2018; Ali and Shahbaz, 
2020). Many water resource areas such as basins, 
dams and rivers are preferred as study areas in 
applications where ANN methods are tested for 
modeling the rainfall–runoff relationship (Dorum 
et al., 2010; Huo et al., 2012; Farajzadeh et al., 
2014; Nourani et al., 2015; Tayyab et al. 2016; 
Mishra and Karmakar, 2018; Obasi et al., 2020; 
LV et al., 2020). Besides, in order to investigate 
the optimum ANN model, there are some sensi-
tivity analysis studies in which transfer functions, 
hidden neurons or several variables (the number 
of spreads etc.) have been tested (Kişi, 2008; Yo-
naba et al., 2010; Nacar et al., 2017; Yüksek et al., 
2018; Sahoo et al., 2019; Sun et al., 2019; Ilaboya 
and Igbinedion, 2019; Drisya et al., 2020). 

The present study investigated the modeling 
of the rainfall–runoff  relationship, which is con-
sidered to be an important factor in the develop-
ment of hydraulic structures. The Nergizlik Dam 
area in the Seyhan sub-basin, which includes fer-
tile agricultural lands, was chosen as the study 
area. Observed rainfall and flow or streamflow 
data were regarded as input values, and the output 
was evaluated as streamflow data. Different ANN 

methods, such as Feed Forward Back Propaga-
tion Neural Networks (FFBPNN) and General-
ized Regression Neural Networks (GRNN) were 
applied, and obtained results were compared with 
the Multiple Linear Regression (MLR) as a con-
ventional method. In addition, in order to create 
optimum ANN modeling, three different transfer 
functions were investigated as Logarithmic sig-
moid, Hyperbolic tangent sigmoid and Purelin 
(linear), different numbers of hidden neurons and 
the number of spread variables were examined to 
observe the effects on the models. Therefore, in 
this study, it is aimed to create an effective predic-
tion model in solving a complex problem such as 
rainfall-runoff modeling. The applicability of ar-
tificial intelligence methods has been investigated 
in order to take preventive measures and to man-
age water resources properly in drainage basins 
such as dams, which are most affected by global 
climate change. Analyzing the model sensitivities 
of different variables for each ANN method, the 
obtained results will make positive contributions 
to the literature in terms of optimum ANN model. 

MATERIALS AND METHODS

Study area

The Nergizlik Dam, which is located in the 
western part of Turkey and extending north-
wards from the Çukurova region, was built on 
the Üçürge Stream and approximately 50 km far 
from Adana in 1995 (Fig. 1). The dam meets the 
agricultural irrigation needs of 2300 hectare area 
and it can be used for flood prevention. The vol-
ume of this earth-fill type dam is approximately 
14.74×106 m³; its height from the riverbed is 
70 m, the lake volume at normal water elevation 
is 21.80 hm³ and the lake area at normal water 
level is 1.08 km² (Turkish State Hydraulic Works 
(known locally as DSI), 2011). In the Seyhan 
sub-basin ,where the Nergizlik Dam is located, 
the Mediterranean and continental climates are 
dominant. Due to the climate characteristics, in 
the Mediterranean climate region, the winter sea-
son is generally rainy, although the snowfall is 
observed where the continental climate region is 
effective.

Seyhan basin is one of the basins that will be 
significantly affected by drought due to climate 
change. As a result of some studies, monthly av-
erage temperatures will increase up to 30°C in the 
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Seyhan Basin; it has been determined that there 
will be a 25% decrease in the annual precipitation 
amount. Thus, it has been predicted that there will 
be a 14% increase in the potential evapotranspira-
tion and a 17% decrease in actual evapotranspi-
ration, depending on the decrease in the precip-
itation. Significant reduction of up to 30% will 
occur in surface water resources, snow storage 
and groundwater potential. It is predicted that this 
climate change will cause a decrease in the water 
resources of the Seyhan Basin (Özfidaner et al. 
2018; Gümüş, 2019).

In the study, the rainfall data from Karaisalı 
and Çatalan, which are the closest two rainfall 
observation stations (ROS) to the Nergizlik Dam 
site, were evaluated between 1992 and 2011. The 
data from this period were obtained from the DSI 
and Turkish State Meteorology Works (known 
locally as DMI). The average monthly flow val-
ues obtained from Flow Observation Stations 
(FOS) and the average monthly rainfall values 
from ROS were used. As can be seen in Table 1, 
the data from FOS nos 1820 and 1828 (Körkün 
Suyu- Hacılıköprüsü and Çakıt Suyu- Salbaş) 

and Ros nos 17351 and 17936 (Karaisalı and 
Çatalan) were utilized and also the location of 
the stations can be seen in Figure 2 (Electrical 
Work Surveying Administration (EWSA), 2008 
and DSI, 2011).

In order to observe the relationship between 
two or more variables and to determine the ef-
fect of the relationship, regression-correlation 
analysis can be performed (Gümüş et al., 2013; 
Bakış and Göncü, 2015; Akçakoca and Apaydın, 
2020). It was observed that the hydrological re-
lationship between the specified FOSs and ROSs 
was quite robust, since the coefficient was found 
close to the value of“1” as a result of the cor-
relation made using the MS-Excel program. 
The observed monthly average flow values   are 
represented as Qt, rainfall values   as Pt, delayed 
streamflow values   before and after t as Qt-1 and 
Qt + 1, respectively, and the rainfall values   before 
and after t as Pt−1 and Pt+1, respectively. Vari-
ous artificial neural network architectures were 
used to model rainfall and runoff data at specific 
times, and the obtained results of streamflow es-
timations were compared.

Table 1. FOS and ROS data (EWSA, 2008 and DSI, 2011) 

FOS and ROS No. Station Name Location Latitude (N) Longitude (E) Altitude (m) Time Period

1820 Körkün Suyu- 
Hacılıköprüsü FOS

Karaisalı

37o 17’44’’ 35o 09’17’’ 167.00

1992–20111828 Çakıt Suyu- Salbaş 
FOS 37o 06’14’’ 35o 06’26’’ 80.00

17936 Karaisalı ROS 37o 15’05’’ 35o 03’47’’ 241.00
17351 Çatalan ROS 37o 13’00’’ 35o 17’00’’ 65.00

Fig. 1. Physical map of the Seyhan Basin (Turhan, 2012)
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Artificial Neural Networks (ANN)

ANN models are computer applications that 
perform learning, association, classification, gen-
eralization, and optimization processes based on 
available data (Sattari et al., 2007; Okkan and 
Mollamahmutoğlu, 2010). To create these mod-
els, many methods such as FFBPNN, GRNN, 
RBFN etc. can be used (Gümüş and Kavşut, 2013; 
Gümüş et al., 2018). The general characteristic of 
all methods is that they contain input, hidden and 
output layers (Ustaoğlu et al., 2008).

There is no limit to the number of hidden or 
intermediate layers and the outputs of neurons 
in one layer can be presented to the next layer 
as input values   employing weights. In the input 
layer, a weight coefficient is applied to obtained 
information with the help of the input vector; 
from here it is transmitted to the neurons in the 
hidden layer (Gümüş et al., 2018; Üneş et al., 
2019). Afterwards, the output of the network is 
completed as a result of applying different pro-
cesses to the information in the hidden and output 
layers (Fig. 3). This means that the architectural 
structure is a non-linear feature in Feed Forward 
Network models. A backpropagation algorithm 
is a programming language that enables a con-
tinuous function to be formed with the desired 

convergence, provided that there are a sufficient 
number of neurons in the hidden layer (Sattari 
et al., 2007; Sattari et al., 2011; Ghumman et 
al., 2011; Aktürk and Yıldız, 2015; Meng et al., 
2015; Tayyab et al., 2016; Nacar et al., 2017; 
Bisoyi et al., 2019; Ali and Shahbaz, 2020; Song 
et al., 2020).   

It is essential to determine the weight values 
for the neural network for the FFBPNN. With a 
net function found as the sum of the weighted in-
put values, the effects of the input data on this 
neuron are stated. These inputs are transferred to 
the output layer with the help of functions called 
transfer or activation functions (Yıldıran and 
Kandemir, 2018). In this study, three different 

Fig. 3. A general structure of ANN  

Fig. 2. Seyhan sub-basin map and FOSs and ROSs used in modeling 
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transfer functions, which are Logsig, Tansig and 
Purelin (Linear), are tested.

GRNN is evaluated as a Feed Forward ANN 
model consisting of four layers: input, pattern, 
summation and output (Gümüş et al., 2013; Yin 
et al., 2016; Tayyab et al., 2016; Modaresi et al., 
2018; Oral et al., 2018; Tayfur et al., 2018). The 
difference of the GRNN from the FFBPNN is that 
they do not require a training process to be re-
peated over and over (Seçkin et al., 2013). The 
general schematic structures of the FFBPNN and 
GRNN are shown in Figure 4 and  Figure 5 as can 
be seen below.

Levenberg-Marquardt algorithm – which is 
accepted as an advanced type of network algo-
rithm – was used in this study, and is considered 
to be an analysis of a complex Hessian matrix 
(Yonaba et al., 2010; Gümüş et al., 2013; Nacar 
et al., 2017; Okkan et al., 2018; Tayyab et al., 
2019; Asadi et al. 2019; Vidyarthi et al., 2020). 
These algorithms were created using the Matlab 
program for ANN modeling, and three different 
transfer functions: Logsig, Tansig and Purelin 
(linear) were used to obtain the optimum net-
work structure. Outputs are determined in the 
range of (0, 1) and the output is evaluated as a 
linear function. 

The normalization process was employed on 
the input data. The purpose of this normaliza-
tion was to homogenize the distribution of values   
within the data set (Okkan et al., 2018; Ilaboya 
and Igbinedion, 2019). Further, very large and 
small values – even erroneously entered values 
–   in this set can be adapted and created on the 
same scale.

Mean Absolute Relative Error (MARE) and 
correlation coefficient (R2) values were used as 
criteria for examining the model performances. 
The fact that the MARE value was close to the 

value of “0” and the R2 value was close to “1” 
means a good prediction model was created (Riad 
et al., 2004; Aichouri et al. 2015; Oral et al., 2018; 
Song et al., 2020). The models were also tested 
on different hidden layer values. The output value 
was taken to be “1”. It can be defined The MARE 
formula can be defined as Eq. 1 and R2 formula 
can be defined as Eq. 2.

In Eq. 2, Qmeasured shows the observed stream-
flow data, Qcalculated shows the flow data obtained 
as a result of the calculated modeling and “N” 
shows the total data (Riad et al., 2004; Aichouri 
et al. 2015; Yaseen et al., 2016; Oral et al. 2018; 
Song et al., 2020): 

(1)

(2)

Multiple Linear Regression (MLR)

The purpose of multiple linear regression is to 
predict the value of the dependent variable using 
independent variables and to find its relationship 
with the independent variables (Ramana, 2014; 
Shoaib et al., 2018). When the dependent variable 
“y” is represented by the arguments x1, x2, .., xr; the 
relationship between them can be shown in Eq.3 
as given below (Okkan and Mollamahmutoğlu, 
2010; Patel et al., 2016; Modaresi et al., 2018):

(3)

where, the unknowns β0, β1, β2,…, βk…, 
βr are called as regression coefficients. Any βk 

Fig. 4. General schematic structure of FFBPNN Fig. 5. General schematic structure of GRNN
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regression coefficient gives the expected amount 
of change in the value for “y” for one unit of 
change in xk when other variables are not affect-
ed. Therefore, βk (k =1, 2 ,…,r) parameters are 
generally expressed as partial regression coeffi-
cients. The term βo is a constant value and repre-
sents the value of the dependent variable when 
all xk variables are zero. The term ε indicates the 
error term (Gümüş and Kavşut, 2013; Üneş et 
al., 2019; Song et al., 2020). MLR results were 
obtained using the Matlab program as in the 
ANN methods. 

If there are deficiencies for observed data in 
a meteorological station, the data of nearby sta-
tions can be used to complete these deficiencies 
(Bayazıt, 2003; Turhan, 2012). For the estimation 
of missing data, the unknown rainfall level at the 
station with the annual average rainfall data can 
be calculated with Eq. 4. In the Eq. 4, the annual 
average rainfall in the nearest three stations can be 
expressed as NA, NB, NC, the values correspond-
ing to the missing rainfall can be expressed as PA, 
PB, PC, and the unknown level at the station with 
the annual average rainfall data can be expressed 
as NX (Turhan, 2012):

(4)

Missing data from Karaisalı and Çatalan 
ROSs were completed by using by the Eq. 4 and 
made suitable for modeling. Thus, different ANN 
architectural structures were formed with several 
combinations using obtained rainfall and stream-
flow values. Of the available data, 60% was eval-
uated at the training stage and 40% at the testing 
stage. In other words, the first 60% of the data set 
was trained as a block and the following part was 
tested. These values   can be evaluated at varied 
rates depending on the scope of the studies (Nacar 
et al., 2017; Akçakoca and Apaydın, 2020).

RESULTS AND DISCUSSIONS

Rainfall–runoff model was created with dif-
ferent combinations using monthly average flow 
values from FOSs no. 1820 and 1828 at t, t−1 and 
t + 1, and from the monthly average rainfall val-
ues from Karaisalı and Çatalan ROSs no. 17936 
and 17351 at, t−1 and t + 1. Flow chart of the de-
veloped ANN model can be seen in Fig. 6. 

The “t” time interval was chosen to run from 
1992 to 2011 by scaling rainfall data between 
0.10 and 0.90. Out of a total of 236 data, 142 were 
evaluated at the training stage and 94 were evalu-
ated at the testing stage. The evaluated data during 

Fig. 6. Flow chart of the developed ANN model
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the testing phase were not used in the training. In 
order to show the relationship between ROSs and 
FOSs, the whole input and output data with the 
model numbers are shown in Table 2. In order to 
show the convergence amount of the FFBPNN 
and GRNN methods to the MLR method, the 
models were employed and the obtained results 
were presented.

Prediction results were compared according 
to the MARE and R2 criteria. It is thought that the 
closer MARE value is to “0” and the R2 value to 
“1”, the more accurate convergence is achieved 
to the predicted value. In general, it was observed 
that ANN methods provided a very high approx-
imation to the MLR method, and some models 
yielded slightly better results. It was observed in 
the models that the ANN architectural structure 
giving the best results had “5” input data, and 
obtained optimum results when the hidden layer 
value was the value of “1” (Fig. 7). 

The best results obtained for training and test-
ing stages for FFBPNN, GRNN, and MLR mod-
els can be seen in Table 3. The obtained R2 values 

indicated compatibility with the observed data. 
A value between 85% and 100% means that the 
model is suitable in terms of performance value. 

Since the MARE indicates average error val-
ue, a value closer to zero indicates that the error 
rate is reduced (Sattari et al., 2012; Yaseen et al., 
2016; Vidyarthi et al., 2020; Song et al., 2020). 
In the Table 3, it is noteworthy that the FFBPNN 
method in particular creates very similar data to 
those of the MLR results. Although the MARE 
values   are close to each other in all methods, it 
was observed that there was a decrease in some 
models. Notwithstanding the MLR yielded bet-
ter results, even if only a little, it was seen that 
the FFBPNN in particular generally provided a 
better approach among the whole ANN methods. 
This result is consistent with the previous studies 
in literature (Gümüş and Kavşut, 2013; Gümüş 
et al., 2013; Tayyab et al., 2016; Turhan et al., 
2016a). Considering basin-based studies, many 
researchers have found that ANN methods yield-
ed satisfactory results (Sun et al., 2019; Obasi 
et al., 2020).

In order to test the sensitivity of the models, 
simulations with three transfer functions (Logsig, 
Tansig, and Purelin) were employed. The ob-
tained results are shown in Table 4.

In the Table 4, it can be emphasized that re-
sults for the three different transfer functions 
were found similar. It can be concluded that the 
data are very close to the MLR method, which 
is a conventional method and widely accepted. 
Furthermore, to test the consistency of the GRNN 
and FFBPNN methods, the effect of the hidden 
neuron and spread number variations for Mod-
el-9 was investigated. The related graphs can be 
seen in Fig. 8.

When the graphs are examined, the spread 
value tends to increase with a few exceptions. 

Fig. 7. The most suitable ANN architecture (5, 1, 1)

Table 2. ANN and MLR model inputs and outputs
Model 

No Input Output

1 P1(t), P2(t), Q1(t), Q1(t+1), Q2(t+1) Q2(t)
2 P1(t), P2(t), Q2(t), Q2(t+1), Q1(t+1) Q1(t)
3 P1(t), P1(t+1), Q1(t), Q1(t+1), Q2(t+1) Q2(t)
4 P2(t), P2(t+1), Q1(t), Q1(t+1), Q2(t+1) Q2(t)
5 P1(t), P1(t+1), Q2(t), Q2(t+1), Q1(t+1) Q1(t)
6 P2(t), P2(t+1), Q2(t), Q2(t+1), Q1(t+1) Q1(t)
7 P1(t), P2(t), Q1(t), Q1(t-1), Q2(t-1) Q2(t)
8 P1(t), P2(t), Q2(t), Q2(t-1), Q1(t-1) Q1(t)
9 P1(t), P1(t-1), Q1(t), Q1(t-1), Q2(t-1) Q2(t)

10 P2(t), P2(t-1), Q1(t), Q1(t-1), Q2(t-1) Q2(t)
11 P1(t), P1(t-1), Q2(t), Q2(t-1), Q1(t-1) Q1(t)
12 P2(t), P2(t-1), Q2(t), Q2(t-1), Q1(t-1) Q1(t)
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It is possible to state that there are decrements 
for the spread value. There is usually a logarith-
mic and exponential increase in Spread-MARE 
graph. In terms of training and testing phases for 
the Model-9 – which gave the best results – time-
dependent flow trends and flow estimation graphs 
obtained with the FFBPNN, GRNN and MLR 
methods can be seen in Fig. 9.

It was seen that the two ANN methods created 
very similar results compared to the MLR. Fur-
thermore, it was seen that the observed and calcu-
lated values are quite close to each other, except 
for the peak values of the streamflows.

The most suitable relationship network with 
regard to R2 and MARE values were obtained 
with the FFBPNN in Model-9 for ROS no 17936, 
FOS nos 1820 and 1828, and also it was con-
sistent with the results of other methods. Even 

though the GRNN accomplished a very high R2 
value during the training phase, it achieved less 
convergence in the testing compared to other 
methods. The Logsig, which has a lower error 
rate as a transfer function, put out optimal values. 

In the GRNN models, the spread value of 0.03 
yielded the lowest error rate. In the models per-
formed on the number of hidden neurons, it was 
observed that the value of “1” produced the high-
est R2 value and the lowest error rate. It was ob-
served that the error rates increase at the turning 
points of the curves; however, the results of the 
FFBPNN were closer to the y=x (exact) line, and 
the obtained results by the MLR were condensed 
around certain points, according to the GRNN. 
This may be caused due to the MARE values be-
ing further away from the value of zero for the 
GRNN results. Although the R2 value is high, the 

Table 4. Using different transfer functions in the 
FFBPNN models 

Name FFBPNN
Training Testing

R2 MARE R2 MARE

Model-1
Logsig 89.26 36.74 81.86 30.23
Tansig 88.93 35.54 82.21 26.53
Purelin 89.40 41.43 81.71 41.33

Model-6
Logsig 91.43 26.09 82.67 52.78
Tansig 91.37 26.92 82.56 57.07
Purelin 91.43 25.26 82.66 50.28

Model-7
Logsig 87.76 31.63 82.87 22.07
Tansig 87.76 31.54 82.83 22.34
Purelin 87.75 31.63 82.86 22.04

Model-8
Logsig 90.32 25.89 81.91 42.88
Tansig 90.31 24.62 80.73 41.89
Purelin 90.32 25.88 81.89 42.81

Model-9
Logsig 87.60 33.14 82.99 22.84
Tansig 86.61 35.70 82.53 24.58
Purelin 87.56 33.94 83.08 23.30

Table 3. Training and testing results for FFBPNN, 
GRNN and MLR modeling

Name Method
Training Testing

R2 MARE R2 MARE

Model-1
FFBNN 89.26 36.74 81.86 30.23
GRNN 96.63 26.96 73.67 55.07
MLR 87.86 32.94 83.30 61.80

Model-6
FFBNN 91.43 26.09 82.67 52.78
GRNN 95.69 25.72 73.43 70.74
MLR 88.96 25.30 82.28 38.91

Model-7
FFBNN 87.76 31.63 82.87 22.07
GRNN 94.92 36.80 78.93 60.43
MLR 88.25 33.00 83.10 54.88

Model-8
FFBNN 90.32 25.89 81.91 42.88
GRNN 95.32 27.27 77.06 71.57
MLR 88.17 26.88 82.70 39.52

Model-9
FFBNN 87.60 33.14 82.99 22.84
GRNN 94.17 40.77 79.22 61.94
MLR 88.10 35.34 83.50 56.49

Fig. 8. Graphs of the changes in Spread-MARE and R2-MARE-k values
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reason for moving away from the symmetry axis 
can be explained by the increase in the error rate, 
namely, the MARE values. Scatter plots of the 
calculated and observed flow data of Model-9 for 
training and testing, are shown in Figure 10. 

CONCLUSIONS

In the present study, the relationship between 
monthly average streamflow data from FOS nos 
1820 and 1828 and monthly total precipitation 
or rainfall data from ROS nos 17351 and 17936 
was investigated using the FFBPNN and GRNN 

for one of the irrigation dams in the Seyhan sub-
basin. The obtained results were compared to the 
MLR method. Of the actual data, 60% was tried 
during the training process, while the remaining 
40% was performed only in the testing phase. 
After many modeling processes, to investigate 
the best approach, rainfall and streamflow values 
were considered as inputs and the flow value   was 
estimated according to these ANN architectures.        

Therefore, in order to evaluate their perfor-
mances, three different transfer functions: Loga-
rithmic Sigmoid (Logsig), Hyperbolic Tangent 
Sigmoid (Tansig) and Purelin (Linear) were used 
in modeling these network structures to evaluate 

Fig. 10. Scatter plots of the calculated and observed flow data for training and testing of Model-9

Fig. 9. ANN Model-9 Scattering plots for training and testing phases
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their performances. To test the sensitivity of the 
FFBPNN and GRNN methods, the effect of hid-
den neurons and variations in spread value were 
also researched. Consequently, it was regarded 
that (5,1,1) is the most suitable ANN architecture 
for this study.  

It can be concluded that streamflow estimation 
models, analyzed with the ANN, can successfully 
model the non-linear rainfall–runoff relationship 
of river basins. With the aim of investigating the 
relationship, it is thought that using the FFBPNN 
method can be a good alternative as a result of the 
application of the ANN methods methods for the 
Nergizlik Dam area. It is a fact that the autocor-
relation function effect on the streamflow estima-
tion can be increased with using more hydrologi-
cal data values and in this way the performance 
of the models can be further improved. The re-
sults already present a high correlation and mini-
mum error rates. Thus, it was concluded that the 
ANN input data for this study was required and 
sufficient to model the Nergizlik Dam inflows. It 
is also obvious that ANN methods will provide 
significant advantages, especially in supporting 
decision-making processes, when it was needed 
to plan and manage appropriately and sustainably 
of water resources.
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